Limited capacity of proximal tubular proteolysis in mice with proteinuria.
نویسندگان
چکیده
Albuminuria is associated with the additional loss in the urine of small molecular weight proteins normally degraded by the proximal convoluted tubule (PCT), and competition for binding to the megalin/cubilin reuptake system has been considered the likely cause. We have previously reported that deficiency of the intrinsic lysosomal protein Limp-2 causes tubular proteinuria due to reduced fusion of endosomes with lysosomes in the PCT leading to inadequate proteolysis. To determine whether this mechanism also contributes to the tubular proteinuria induced by albumin overload in normal mice, wild-type (WT) mice received daily BSA injections intraperitoneally for 10 days, using untreated Limp-2(-/-) mice as positive controls for inadequate proteolysis. BSA overload induced significant urinary loss of megalin and cubilin ligands in WT mice. Tubular uptake of Alexa-conjugated BSA, administered by intravenous injection, was not reduced in the PCT of mice receiving intraperitoneal BSA. Expression of the tubular protein receptor megalin was also unchanged. There was a delay in proteolysis of reabsorbed proteins in WT mice receiving BSA, evidenced by an increased quantity of retinol-binding protein (RBP) in the kidney cortex, increased basal distribution of endocytosed RBP in cells of the PCT, and persistence of exogenous Alexa-conjugated BSA and RBP after injection. Upregulation of cathepsin L and normal fusion of lysosomes with endosomes were apparently not sufficient to maintain normal clearance of endocytosed proteins. The data suggest that in the presence of competition from albumin overload, reabsorption of filtered proteins is limited by the capacity of lysosomal degradation rather than receptor-mediated endocytosis.
منابع مشابه
Tubular proteinuria in mice and humans lacking the intrinsic lysosomal protein SCARB2/Limp-2.
Deficiency of the intrinsic lysosomal protein human scavenger receptor class B, member 2 (SCARB2; Limp-2 in mice) causes collapsing focal and segmental glomerular sclerosis (FSGS) and myoclonic epilepsy in humans, but patients with no apparent kidney damage have recently been described. We now demonstrate that these patients can develop tubular proteinuria. To determine the mechanism, mice defi...
متن کاملThe molecular interactions between filtered proteins and proximal tubular cells in proteinuria.
Proteinuria is associated with progressive chronic kidney disease and poor cardiovascular outcomes. Exposure of proximal tubular epithelial cells to excess proteins leads to the development of proteinuric nephropathy with tubular atrophy, interstitial inflammation and scarring. Numerous signalling pathways are activated in proximal tubular epithelial cells under proteinuric conditions resulting...
متن کاملObesity-mediated autophagy insufficiency exacerbates proteinuria-induced tubulointerstitial lesions.
Obesity is an independent risk factor for renal dysfunction in patients with CKDs, including diabetic nephropathy, but the mechanism underlying this connection remains unclear. Autophagy is an intracellular degradation system that maintains intracellular homeostasis by removing damaged proteins and organelles, and autophagy insufficiency is associated with the pathogenesis of obesity-related di...
متن کاملNHE3 Na+/H+ exchanger supports proximal tubular protein reabsorption in vivo.
Proximal tubular receptor-mediated endocytosis (RME) of filtered proteins prevents proteinuria. Pharmacological and genetic studies in cultured opossum kidney cells have shown that the apical Na(+)/H(+) exchanger isoform 3 (NHE3) supports RME by interference with endosomal pH homeostasis and endocytic fusion events. However, it is not known whether NHE3 also supports proximal tubular RME in viv...
متن کاملCD36 mediates proximal tubular binding and uptake of albumin and is upregulated in proteinuric nephropathies.
Dysregulation of renal tubular protein handling in proteinuria contributes to the development of chronic kidney disease. We investigated the role of CD36 as a novel candidate mediator of albumin binding and endocytosis in the kidney proximal tubule using both in vitro and in vivo approaches, and in nephrotic patient renal biopsy samples. In CD36-transfected opossum kidney proximal tubular cells...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 304 7 شماره
صفحات -
تاریخ انتشار 2013